Extending the random-phase approximation for electronic correlation energies: The renormalized adiabatic local density approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this fa...

متن کامل

Excitation energies from time-dependent density-functional theory beyond the adiabatic approximation.

Time-dependent density-functional theory in the adiabatic approximation has been very successful for calculating excitation energies in molecular systems. This paper studies nonadiabatic effects for excitation energies, using the current-density functional of Vignale and Kohn [Phys. Rev. Lett. 77, 2037 (1996)]. We derive a general analytic expression for nonadiabatic corrections to excitation e...

متن کامل

Density functional theory beyond the linear regime: Validating an adiabatic local density approximation

N. Helbig,1 J. I. Fuks,1 M. Casula,2 M. J. Verstraete,3,4 M. A. L. Marques,5,4 I. V. Tokatly,1,6 and A. Rubio1,7 1Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento Fı́sica de Materiales, Universidad del Paı́s Vasco, CFM CSIC-UPV/EHU-MPC and DIPC, Avenida Tolosa 72, E-20018 San Sebastián, Spain 2CNRS and Institut de Minéralogie et de Physique des Milieux Condensés, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2012

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.86.081103